2022 Topical Symposia |
NO. | Topic | Time | Location | Coordinator | Introduction |
1 | 新興能源科學 Emerging Energy Science(EES) | O2:1/25 09:00~10:30 O3:1/25 13:30~15:00 | Lecture & Research Building 4F S401 | 董崇禮 (淡江大學物理學系) Chung-Li Dong ( Department of Physics, Tamkang University )/ 林彥谷 (國家同步輻射研究中心) Yan-Gu Lin ( National Synchrotron Radiation Research Center ) | The planet earth is currently experiencing extreme climatic conditions and severe shortages of resources. There is a need for the country to ride the wave of energy transition and grasp the opportunities presented by green energy technologies. It is urgent to comply with the greenhouse gas reduction ratified in the Paris Agreement (COP21). However, the global carbon dioxide concentration measured at the Mauna Loa Observatory this year, reached 415 ppm, a record high. Green and low-carbon energy will play a key role in achieving Carbon Cycle 2.0 and lead us to the third industrial revolution. Currently, energy self-sufficiency is less than 2% in Taiwan, more than 98% still rely on imports (especially for petrochemical sources). How to achieve 20% of renewable energy usage in 2025 planned by the Taiwan government depends on the integration of frontier scientific research and cutting-edge technology development from various disciplines. This forum “Emerging Energy Science” will encompass advanced functional materials for solar hydrogen energy, artificial photosynthesis, energy storage batteries/supercapacitors, energy saving windows, efficient nanocatalysis, etc. Through the exchanges among multiple parties, integrating cross-disciplinary knowledge (including nanoscience, semiconductor, and electro-optics/optoelectronics), we hope to accelerate local research on energy technologies, and early realization of government`s goal to development of sustainable and renewable energy. 石化燃料成本低、技術成熟,一直是能源主要供應來源。但所排放溫室氣體造成全球極端氣候。早在2010年哥本哈根會議中提出減碳排放以控制升溫2C內。並進一步在2015年聯合國氣候變化綱要公約締約國會議(COP21)通過「巴黎協定」,訂立國際溫室氣體減量規範,重申願景為控制1.5度內,並於2023年首度總檢視各國減碳成果。惟今年6月在Mauna Loa Observatory所測得全球二氧化碳濃度達416.39ppm、又創新高。期間,台灣已於2017規劃「能源轉型路徑」,其中之一為發展無碳再生能源、目標為2025年再生能源佔比為20%(目前僅約4%)。台灣能源結構勢必須面臨重大挑戰。有鑑於此,亦承如2019諾獎得主Goodenough教授於訪問中強調,除了儲能電池,如何利用太陽氫能是未來乾淨永續能源發展方向。有鑑於近年台灣在新穎、能源及功能性材料的國際高水準表現,本論壇將以「新興能源科學」為主軸,涵蓋太陽氫能、人工光合作用、奈米催化、儲能二次電池及超電容、熱電等能源材料。透過跨領域(包含奈米科學,半導體,光學光電)之基礎研究交流,整合研究技術與科學知識,盼能加速國內能源科技之研究及發展,以保持在國際上能源科技之地位,早日達到再生能源發展目標。 |
2 | 量子傳輸與多體系統 Quantum transport in many-body systems(NM) | O3:1/25 13:30~15:00 O4:1/25 17:00~18:00 | Lecture & Research Building 4F S402 | 鍾佳民(國立中山大學物理系) Chia-Min Chung ( Department of Physics, National Sun Yat-sen University) 高英哲 (國立臺灣大學物理學系) Ying-Jer Kao ( Department of Physics, National Taiwan University )/ 陳柏中 (國立清華大學物理學系) Pochung Chen ( Department of Physics, National Tsing Hua University)/ 林及仁 (國立陽明交通大學物理研究所) C.-J. David Lin (Institute of Physics, National Yang Ming Chiao Tung University) | Quantum transport is one of the key techniques in understanding the properties of a quantum system, which finds applications in quantum computation, condensed matter, cold atoms in optical lattices, and quantum chemistry. Over the past decade, important progress has been made especially in one-dimensional quantum systems. An important application is in understanding one-dimensional topological states in quantum wires, which are the building blocks of topological quantum computer. Thanks to the development of numerical methods, now we can quantitatively study the quantum transport properties in many-body systems, which is crucial in developing new quantum devices. In this symposium we will focus on the theoretical progress of quantum transport on many-body systems. 量子傳輸是了解量子系統的一個重要的技術,在量子計算、凝態物理、冷原子系統以及量子化學中都有重要的應用。在過去十年中,量子傳輸在尤其是一維的系統中有了重要的進展。其中一個重要的應用是能幫助了解一維系統中的拓樸量子態,此量子態為實現拓樸量子電腦的基礎。歸功於數值計算方法在近年的發展,現在我們已經能夠研究在多體系統中的量子傳輸, 這對於發展量子量子元件來說是重要的進展。在此研討會我們將專注在量子傳輸—特別是對於多體量子系統中的理論進展。 |
教學研究大樓 Lecture & Research Building
To find the details of agenda, please refer Oral sessions.